organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Acetamido-5-nitrobenzyl acetate

Gul S. Khan, Anna L. Lehmann, George R. Clark* and David Barker

Chemistry Department, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail: g.clark@auckland.ac.nz

Received 19 August 2007; accepted 31 August 2007

Key indicators: single-crystal X-ray study; T = 89 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.110; data-to-parameter ratio = 13.8.

The title compound, $C_{11}H_{12}N_2O_5$, was prepared by the reaction of 3-amino-5-nitrobenzyl alcohol with acetic anhydride. The asymmetric unit contains three independent molecules which differ in geometry only by their rotation about the single bonds external to the benzene ring. The title compound is an intermediate in the synthesis of DNA minor-groove-binding polybenzamide agents.

Related literature

For related literature on the biological activity of polybenzamide DNA binding agents, see: Storl *et al.* (1993). For related literature on natural and synthetic minor-groovebinding agents, see: Arcamone *et al.* (1964); Atwell *et al.* (1995); Baraldi *et al.* (1999, 2004, 2007); Turner *et al.* (1999); Wemmer (2000); Yan *et al.* (1997).

Experimental

Crystal data

 $\begin{array}{l} C_{11}H_{12}N_2O_5\\ M_r = 252.23\\ Monoclinic, P2_1/n\\ a = 10.5303 \ (2) \ \text{\AA}\\ b = 21.2894 \ (2) \ \text{\AA}\\ c = 15.5410 \ (2) \ \text{\AA}\\ \beta = 105.508 \ (1)^\circ \end{array}$

V = 3357.20 (8) Å ³
Z = 12
Mo $K\alpha$ radiation
$\mu = 0.12 \text{ mm}^{-1}$
T = 89 (2) K
$0.42 \times 0.28 \times 0.22$ mm

Data collection

```
Siemens SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
T_{\min} = 0.846, T_{\max} = 0.979
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	493 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
6805 reflections	$\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$

19573 measured reflections

 $R_{\rm int} = 0.019$

6805 independent reflections

5399 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geo	ometry (A, ¹)
-------------------	-------------------------	---

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1A \cdots O3A^{i}$	0.86	2.35	3.1897 (17)	166
$N1B - H1B \cdots O3B^{ii}$	0.86	2.32	3.1506 (16)	164
$N1C - H1C \cdots O3C^{i}$	0.86	2.31	3.1458 (17)	164
$C2A - H2A \cdots O2A^{i}$	0.93	2.54	3.4345 (18)	161
$C2B - H2B \cdots O2B^{ii}$	0.93	2.49	3.4046 (18)	169
$C2C - H2C \cdots O2C^{i}$	0.93	2.56	3.4546 (18)	161
			· · ·	

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXTL* (Siemens, 1995).

The authors acknowledge financial support from the Higher Education Commission of Pakistan and the University of Auckland, New Zealand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2042).

References

- Arcamone, F., Penco, S., Orezzi, P., Nicolella, V. & Pirelli, A. (1964). Nature (London), 203, 1064–1065.
- Atwell, G. J., Yaghi, B. M., Turner, P. R., Boyd, M., O'Connor, C. J., Ferguson, L. R., Baguley, B. C. & Denny, W. A. (1995). *Bioorg. Med. Chem.* 3, 679–691.
- Baraldi, P., Bovero, G., Fruttarolo, A., Preti, F., Tabrizi, D., Pavani, M. & Romagnoli, R. (2004). *Med. Res. Rev.* 24, 475–528.
- Baraldi, P., Preti, D., Fruttarolo, F., Tabrizi, M. & Romagnoli, R. (2007). Bioorg. Med. Chem. 15, 17–35.
- Baraldi, P. G., Cozzi, P., Geroni, C., Mongelli, N., Romagnoli, R. & Spalluto, G. (1999). Bioorg. Med. Chem. 7, 251–262.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1995). SHELXTL (Version 5), SMART (Version 4.050) and SAINT (Version 4.050). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Storl, K., Storl, J., Zimmer, C. & Lown, J. (1993). FEBS Lett. 317, 157-161.

Turner, P., Ferguson, L. & Denny, W. (1999). Anti-Cancer Drug Des. 14, 61–70. Wemmer, D. E. (2000). Annu. Rev. Biophys. Biomol. Struct. 29, 439–461.

Yan, Y., Liu, M. & Gong, B. (1997). Bioorg. Med. Chem. Lett. 7, 1469–1474.

Acta Cryst. (2007). E63, o3984 [doi:10.1107/S160053680704278X]

3-Acetamido-5-nitrobenzyl acetate

G. S. Khan, A. L. Lehmann, G. R. Clark and D. Barker

Comment

The naturally occurring antibiotic oligopeptides distamycin A, isolated from *Streptomyces Distallicus*, and netropsin, from *Streptomyces netropsis*, are powerful DNA minor groove-binding agents but their cytotoxity precludes their use as medicines (Arcamone *et al.*, 1964, Baraldi *et al.*, 2004, Wemmer, 2000, Storl *et al.*, 1993). In order to increase the DNA binding affinity and sequence specifity along with minimizing the unwanted physiological activities associated with these natural DNA binders, many synthetic oligopeptides have been prepared (Baraldi *et al.*, 2007). The title compound is a key intermediate required in the synthesis of a novel polybenzamide DNA minor groove-binding agent. For background information on polybenzamide DNA binding agents see (Atwell *et al.*, 1995, Turner *et al.*, 1999, Yan *et al.*, 1997).

Experimental

To a solution of 3-amino-5-nitrobenzyl alcohol (1 g, 5.95 mmol) in DMF (25 ml) was added acetic anhydride (1.69 ml, 17.84 mmol) and triethylamine (3.34 ml, 23.79 mmol), and the resulting mixture was stirred at room temperature for 24 h. Water (75 ml) was added, and the mixture stirred for 10 minutes. The resultant precipitate was filtered, and dried *in vacuo*, to afford a yellow solid, which was recrystallized from ethyl acetate to give the title compound (1.34 g, 90%), as yellow crystals suitable for X-ray crystallography (m.p. 430–431 K). Spectroscopic analysis. IR (v_{max} , thin film, cm⁻¹) 3367, 1742, 1547, 1242. ¹H NMR (400 MHz, CDCl₃, δ , p.p.m.) 2.15 (3*H*, s, OCOC*H*₃), 2.19 (3*H*, s, NHCOCH₃, 5.15 (2*H*, s, C*H*₂OAc), 7.89 (1*H*, s, Ar—H), 8.15 (1*H*, s, Ar—H), 8.34 (1*H*, s, Ar—H) and 9.44 (NH). ¹³C NMR (100 MHz, CDCl₃, δ , p.p.m.) 20.8 (CH₃, OCOCH₃), 24.3 (CH₃, NHCOCH₃), 64.9 (CH₂, CH₂OAc), 113.7 (CH, Ar—C) 117.1 (CH, Ar—C), 124.4 (CH, Ar—C), 138.4 (quat. Ar—C), 140.2 (quat. Ar—C), 148.4 (quat. Ar—C), 169.4 (C=O, NHAc) and 170.5 (C=O, OAc). MS *m/z* (EI) 252 (*M*⁺, 12%), 210 (*M*⁺—C₂H₂O, 33), 168 (*M*⁺—C₄H₄O₂, 52), 43 (COCH₃, 100). HRMS (EI), found: *M*⁺ 252.07469. C₁₁H₁₂N₂O₅ requires: 252.07462.

Refinement

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97, N—H 0.86 Å), with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C_{methyl})$.

Figures

Fig. 1. Structure of molecule A showing 50% probability displacement ellipsoids for non-hydrogen atoms and hydrogen atoms as arbitary spheres (Burnett & Johnson, 1996).

3-Acetamido-5-nitrobenzyl acetate

Crystal data	
$C_{11}H_{12}N_2O_5$	$F_{000} = 1584$
$M_r = 252.23$	$D_{\rm x} = 1.497 { m Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5612 reflections
<i>a</i> = 10.5303 (2) Å	$\theta = 1.9 - 26.3^{\circ}$
<i>b</i> = 21.2894 (2) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 15.5410 (2) Å	T = 89 (2) K
$\beta = 105.508 \ (1)^{\circ}$	Triangular plate, yellow
$V = 3357.20 (8) \text{ Å}^3$	$0.42\times0.28\times0.22~mm$
Z = 12	

Data collection

Siemens SMART CCD diffractometer	6805 independent reflections
Radiation source: fine-focus sealed tube	5399 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
T = 89(2) K	$\theta_{\text{max}} = 26.3^{\circ}$
Area detector ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)	$h = -13 \rightarrow 12$
$T_{\min} = 0.846, T_{\max} = 0.979$	$k = 0 \rightarrow 26$
19573 measured reflections	$l = 0 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained

$P(T^2) = 0.110$	$w = 1/[\sigma^2(F_0^2) + (0.0494P)^2 + 1.614P]$
WR(F) = 0.110	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.006$
6805 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
493 parameters	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Extinction correction: none

Special details

Experimental. After primary data collection, a portion of the first block of data was re-measured to check for crystal decay. No decay was detected.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01A	0.20242 (12)	0.40432 (5)	1.03528 (7)	0.0256 (3)
O2A	0.03071 (11)	0.27053 (5)	0.82048 (7)	0.0229 (3)
O3A	0.02592 (11)	0.16851 (5)	0.81733 (7)	0.0232 (3)
O4A	0.38742 (10)	0.10197 (5)	1.20058 (7)	0.0195 (2)
O5A	0.37340 (11)	-0.00115 (5)	1.22967 (8)	0.0251 (3)
N1A	0.31059 (12)	0.32713 (6)	1.12891 (8)	0.0167 (3)
H1A	0.3680	0.3210	1.1791	0.020*
N2A	0.06020 (12)	0.21898 (6)	0.85658 (8)	0.0175 (3)
C1A	0.24095 (14)	0.15840 (7)	1.08144 (10)	0.0167 (3)
C2A	0.28688 (14)	0.21476 (7)	1.12436 (10)	0.0160 (3)
H2A	0.3376	0.2140	1.1834	0.019*
C3A	0.25812 (14)	0.27261 (7)	1.08026 (10)	0.0153 (3)
C4A	0.18188 (14)	0.27437 (7)	0.99157 (10)	0.0161 (3)
H4A	0.1606	0.3122	0.9611	0.019*
C5A	0.13906 (14)	0.21703 (7)	0.95063 (10)	0.0159 (3)
C6A	0.16598 (14)	0.15904 (7)	0.99234 (10)	0.0174 (3)
H6A	0.1353	0.1220	0.9622	0.021*
C7A	0.26692 (15)	0.09636 (7)	1.13020 (10)	0.0209 (3)
H7A1	0.1944	0.0860	1.1552	0.025*
H7A2	0.2752	0.0632	1.0892	0.025*
C8A	0.42784 (15)	0.04897 (7)	1.24824 (10)	0.0189 (3)
C9A	0.54698 (16)	0.06175 (8)	1.32327 (11)	0.0256 (4)
H9A1	0.5725	0.0241	1.3575	0.038*

H9A2	0.5273	0.0940	1.3609	0.038*
H9A3	0.6178	0.0753	1.2997	0.038*
C10A	0.28073 (15)	0.38884 (7)	1.10552 (10)	0.0174 (3)
C11A	0.35432 (16)	0.43580 (7)	1.17357 (10)	0.0201 (3)
H11A	0.4441	0.4384	1.1707	0.030*
H11B	0.3523	0.4225	1.2322	0.030*
H11C	0.3133	0.4763	1.1611	0.030*
O1B	0.57431 (11)	0.40304 (5)	1.05607 (7)	0.0213 (2)
O2B	0.77968 (11)	0.27015 (5)	1.26096 (7)	0.0213 (2)
O3B	0.78042 (11)	0.16832 (5)	1.26736 (7)	0.0223 (3)
O4B	0.40024 (11)	0.10339 (5)	0.88349 (7)	0.0215 (3)
O5B	0.37726 (11)	-0.00115 (5)	0.86389 (7)	0.0246 (3)
N1B	0.47811 (12)	0.32491 (6)	0.95923 (8)	0.0153 (3)
H1B	0.4269	0.3184	0.9068	0.018*
N2B	0.74344 (12)	0.21833 (6)	1.22784 (8)	0.0164 (3)
C1B	0.52801 (14)	0.15630 (7)	1.01409 (10)	0.0152 (3)
C2B	0.48614 (14)	0.21223 (7)	0.96936 (10)	0.0144 (3)
H2B	0.4298	0.2110	0.9120	0.017*
C3B	0.52750 (14)	0.27076 (7)	1.00929 (10)	0.0135 (3)
C4B	0.61325 (14)	0.27305 (7)	1.09487 (10)	0.0148 (3)
H4B	0.6427	0.3111	1.1225	0.018*
C5B	0.65302 (14)	0.21562 (7)	1,13730 (9)	0.0146 (3)
C6B	0.61306 (14)	0.15735 (7)	1.10019 (10)	0.0151 (3)
H6B	0.6417	0.1204	1.1313	0.018*
C7B	0 48392 (15)	0 09296 (7)	0.97218 (10)	0.0178 (3)
H7B1	0 5599	0.0681	0.9694	0.021*
H7B2	0.4360	0.0704	1 0077	0.021*
C8B	0.35221 (15)	0.05156(7)	0.83557 (10)	0.021 0.0182 (3)
C9B	0.26650 (17)	0.06949 (8)	0.74595(11)	0.0102(3)
H9B1	0.2311	0.0323	0.7134	0.040*
H9B2	0.3177	0.0922	0.7136	0.040*
H9B3	0.1956	0.0922	0.7532	0.040*
C10B	0.50159 (14)	0.38687 (7)	0.98385 (10)	0.0155(3)
C11B	0.30137(14) 0.43046(16)	0.33007(7)	0.98385 (10)	0.0135(3) 0.0212(3)
HIID	0.43040 (10)	0.4753	0.9375	0.0212(3)
HIIE	0.3373	0.4759	0.9575	0.032*
H11E	0.5575	0.4239	0.9007	0.032*
010	0.4398 0.71016 (12)	0.4289	0.8013	0.032° 0.0252(2)
	0.71910(12) 0.48246(11)	0.40220(3)	0.65142(7)	0.0232(3)
020	0.48240(11) 0.48780(11)	0.27074(3)	0.03827(7)	0.0223(3) 0.0251(3)
030	0.46760(11)	0.10908(3)	0.04614(7)	0.0231(3)
040	0.80343(11)	0.09804 (3)	1.02019(7)	0.0200(2)
03C	0.87340(13)	-0.00043(0)	1.04009 (8)	0.0389(3)
NIC	0.81090 (12)	0.32433 (0)	0.95011 (8)	0.0108 (3)
HIC	0.8017	0.3180	1.0027	0.020°
NZC CLC	0.32430(12)	0.21003(0)	$0.00001(\delta)$	0.01/0(3)
	0.70310(14)	0.15500 (7)	0.89269 (10)	0.0150(3)
	0.80760 (14)	0.21158 (/)	0.93740 (10)	0.0152 (3)
H2C	0.8694	0.2101	0.992/	0.0140 (2)
C3C	0.76084 (14)	0.27013 (7)	0.90059 (10)	0.0149 (3)

C4C	0.66657 (14)	0.27263 (7)	0.81786 (10)	0.0160 (3)
H4C	0.6339	0.3108	0.7920	0.019*
C5C	0.62360 (14)	0.21569 (7)	0.77576 (10)	0.0154 (3)
C6C	0.66830 (14)	0.15707 (7)	0.81015 (10)	0.0156 (3)
H6C	0.6365	0.1203	0.7796	0.019*
C7C	0.81812 (16)	0.09256 (7)	0.93031 (10)	0.0185 (3)
H7C1	0.7499	0.0607	0.9150	0.022*
H7C2	0.8897	0.0802	0.9055	0.022*
C8C	0.89136 (15)	0.04494 (7)	1.07379 (11)	0.0186 (3)
C9C	0.93755 (16)	0.05777 (8)	1.17183 (10)	0.0222 (3)
H9C1	0.8657	0.0521	1.1982	0.033*
H9C2	0.9692	0.1002	1.1813	0.033*
H9C3	1.0075	0.0293	1.1989	0.033*
C10C	0.78867 (15)	0.38631 (7)	0.92479 (10)	0.0175 (3)
C11C	0.85702 (16)	0.43276 (7)	0.99532 (11)	0.0216 (3)
H11G	0.8471	0.4743	0.9705	0.032*
H11H	0.9490	0.4225	1.0156	0.032*
H11I	0.8185	0.4310	1.0447	0.032*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0318 (6)	0.0168 (6)	0.0220 (6)	0.0032 (5)	-0.0036 (5)	0.0006 (5)
O2A	0.0258 (6)	0.0205 (6)	0.0187 (6)	0.0017 (5)	-0.0006 (5)	0.0038 (5)
O3A	0.0266 (6)	0.0209 (6)	0.0196 (6)	-0.0049 (5)	0.0015 (5)	-0.0050 (5)
O4A	0.0205 (5)	0.0151 (5)	0.0190 (6)	-0.0015 (4)	-0.0015 (4)	0.0024 (4)
O5A	0.0314 (6)	0.0150 (6)	0.0262 (6)	-0.0032 (5)	0.0030 (5)	0.0013 (5)
N1A	0.0180 (6)	0.0154 (6)	0.0141 (6)	0.0010 (5)	-0.0002 (5)	-0.0011 (5)
N2A	0.0165 (6)	0.0194 (7)	0.0161 (6)	-0.0010 (5)	0.0036 (5)	0.0000 (5)
C1A	0.0145 (7)	0.0165 (8)	0.0192 (8)	0.0001 (6)	0.0046 (6)	0.0015 (6)
C2A	0.0154 (7)	0.0185 (8)	0.0129 (7)	0.0004 (6)	0.0017 (6)	0.0007 (6)
C3A	0.0138 (7)	0.0139 (7)	0.0182 (7)	-0.0001 (6)	0.0044 (6)	-0.0012 (6)
C4A	0.0159 (7)	0.0163 (8)	0.0159 (7)	0.0011 (6)	0.0037 (6)	0.0004 (6)
C5A	0.0145 (7)	0.0179 (8)	0.0144 (7)	0.0003 (6)	0.0023 (6)	0.0006 (6)
C6A	0.0163 (7)	0.0156 (8)	0.0194 (8)	-0.0015 (6)	0.0035 (6)	-0.0015 (6)
C7A	0.0210 (8)	0.0166 (8)	0.0213 (8)	-0.0037 (6)	-0.0011 (6)	0.0021 (6)
C8A	0.0223 (8)	0.0163 (8)	0.0189 (8)	0.0013 (6)	0.0071 (6)	0.0014 (6)
C9A	0.0287 (9)	0.0210 (8)	0.0231 (8)	0.0018 (7)	0.0002 (7)	0.0047 (7)
C10A	0.0191 (7)	0.0158 (7)	0.0179 (7)	0.0018 (6)	0.0059 (6)	0.0004 (6)
C11A	0.0239 (8)	0.0151 (8)	0.0203 (8)	0.0008 (6)	0.0044 (6)	0.0000 (6)
O1B	0.0267 (6)	0.0151 (5)	0.0176 (6)	-0.0004 (5)	-0.0020 (5)	-0.0014 (4)
O2B	0.0263 (6)	0.0157 (6)	0.0178 (6)	-0.0016 (5)	-0.0014 (5)	-0.0030 (4)
O3B	0.0276 (6)	0.0166 (6)	0.0177 (6)	0.0030 (5)	-0.0023 (5)	0.0036 (4)
O4B	0.0290 (6)	0.0126 (5)	0.0162 (5)	-0.0017 (5)	-0.0053 (5)	-0.0006 (4)
O5B	0.0326 (6)	0.0136 (6)	0.0225 (6)	-0.0016 (5)	-0.0014 (5)	0.0002 (5)
N1B	0.0178 (6)	0.0127 (6)	0.0122 (6)	0.0002 (5)	-0.0017 (5)	0.0004 (5)
N2B	0.0184 (6)	0.0150 (7)	0.0147 (6)	0.0010 (5)	0.0027 (5)	0.0002 (5)
C1B	0.0152 (7)	0.0145 (7)	0.0157 (7)	0.0003 (6)	0.0038 (6)	-0.0012 (6)

C2B	0.0133 (7)	0.0165 (7)	0.0125 (7)	-0.0004 (6)	0.0020 (6)	0.0000 (6)
C3B	0.0139 (7)	0.0126 (7)	0.0140 (7)	0.0008 (5)	0.0039 (6)	0.0007 (6)
C4B	0.0156 (7)	0.0128 (7)	0.0152 (7)	-0.0004 (6)	0.0029 (6)	-0.0015 (6)
C5B	0.0143 (7)	0.0170 (8)	0.0115 (7)	0.0002 (6)	0.0018 (6)	0.0002 (6)
C6B	0.0169 (7)	0.0128 (7)	0.0148 (7)	0.0010 (6)	0.0028 (6)	0.0021 (6)
C7B	0.0202 (8)	0.0144 (8)	0.0153 (7)	0.0005 (6)	-0.0012 (6)	0.0016 (6)
C8B	0.0192 (7)	0.0156 (8)	0.0191 (8)	-0.0024 (6)	0.0041 (6)	-0.0036 (6)
C9B	0.0337 (9)	0.0176 (8)	0.0215 (8)	-0.0020 (7)	-0.0041 (7)	-0.0013 (7)
C10B	0.0156 (7)	0.0150 (7)	0.0161 (7)	0.0004 (6)	0.0045 (6)	0.0007 (6)
C11B	0.0262 (8)	0.0148 (8)	0.0193 (8)	0.0005 (6)	0.0000 (7)	0.0012 (6)
O1C	0.0326 (6)	0.0166 (6)	0.0211 (6)	-0.0017 (5)	-0.0021 (5)	0.0021 (5)
O2C	0.0235 (6)	0.0194 (6)	0.0204 (6)	0.0034 (5)	-0.0006 (5)	0.0036 (5)
O3C	0.0288 (6)	0.0198 (6)	0.0213 (6)	-0.0012 (5)	-0.0029 (5)	-0.0052 (5)
O4C	0.0281 (6)	0.0138 (5)	0.0148 (5)	0.0006 (4)	-0.0003 (5)	0.0004 (4)
O5C	0.0691 (10)	0.0154 (6)	0.0245 (7)	0.0014 (6)	-0.0007 (7)	0.0011 (5)
N1C	0.0180 (6)	0.0152 (6)	0.0141 (6)	0.0000 (5)	-0.0010 (5)	-0.0007 (5)
N2C	0.0171 (6)	0.0192 (7)	0.0155 (6)	-0.0006 (5)	0.0028 (5)	-0.0012 (5)
C1C	0.0168 (7)	0.0153 (7)	0.0156 (7)	0.0008 (6)	0.0059 (6)	0.0008 (6)
C2C	0.0135 (7)	0.0177 (8)	0.0130 (7)	0.0005 (6)	0.0010 (6)	0.0007 (6)
C3C	0.0159 (7)	0.0145 (7)	0.0152 (7)	-0.0005 (6)	0.0057 (6)	-0.0006 (6)
C4C	0.0175 (7)	0.0150 (7)	0.0156 (7)	0.0002 (6)	0.0044 (6)	0.0010 (6)
C5C	0.0150 (7)	0.0173 (8)	0.0136 (7)	0.0004 (6)	0.0033 (6)	0.0001 (6)
C6C	0.0172 (7)	0.0150 (7)	0.0152 (7)	-0.0017 (6)	0.0052 (6)	-0.0018 (6)
C7C	0.0232 (8)	0.0152 (8)	0.0150 (7)	0.0007 (6)	0.0011 (6)	-0.0015 (6)
C8C	0.0207 (8)	0.0131 (8)	0.0209 (8)	0.0013 (6)	0.0037 (6)	0.0029 (6)
C9C	0.0245 (8)	0.0199 (8)	0.0204 (8)	0.0001 (7)	0.0029 (7)	0.0024 (6)
C10C	0.0167 (7)	0.0153 (8)	0.0200 (8)	-0.0012 (6)	0.0042 (6)	0.0009 (6)
C11C	0.0250 (8)	0.0136 (8)	0.0232 (8)	-0.0017 (6)	0.0013 (7)	0.0002 (6)

Geometric parameters (Å, °)

O1A—C10A	1.2243 (19)	C3B—C4B	1.394 (2)
O2A—N2A	1.2339 (17)	C4B—C5B	1.399 (2)
O3A—N2A	1.2405 (17)	C4B—H4B	0.9300
O4A—C8A	1.3546 (18)	C5B—C6B	1.385 (2)
O4A—C7A	1.4417 (18)	С6В—Н6В	0.9300
O5A—C8A	1.2091 (19)	C7B—H7B1	0.9700
N1A—C10A	1.377 (2)	C7B—H7B2	0.9700
N1A—C3A	1.4145 (19)	C8B—C9B	1.493 (2)
N1A—H1A	0.8600	C9B—H9B1	0.9600
N2A—C5A	1.4761 (19)	С9В—Н9В2	0.9600
C1A—C2A	1.395 (2)	С9В—Н9В3	0.9600
C1A—C6A	1.399 (2)	C10B—C11B	1.508 (2)
C1A—C7A	1.511 (2)	C11B—H11D	0.9600
C2A—C3A	1.403 (2)	C11B—H11E	0.9600
C2A—H2A	0.9300	C11B—H11F	0.9600
C3A—C4A	1.398 (2)	O1C—C10C	1.2267 (18)
C4A—C5A	1.395 (2)	O2C—N2C	1.2344 (17)
C4A—H4A	0.9300	O3C—N2C	1.2372 (17)

C5A—C6A	1.388 (2)	O4C—C8C	1.3493 (18)
С6А—Н6А	0.9300	O4C—C7C	1.4451 (17)
C7A—H7A1	0.9700	O5C—C8C	1.205 (2)
С7А—Н7А2	0.9700	N1C—C10C	1.379 (2)
C8A—C9A	1.492 (2)	N1C—C3C	1.4088 (19)
С9А—Н9А1	0.9600	N1C—H1C	0.8600
С9А—Н9А2	0.9600	N2C—C5C	1.4781 (19)
С9А—Н9А3	0.9600	C1C—C2C	1.396 (2)
C10A—C11A	1.510 (2)	C1C—C6C	1.400 (2)
C11A—H11A	0.9600	C1C—C7C	1.516 (2)
C11A—H11B	0.9600	C2C—C3C	1.404 (2)
C11A—H11C	0.9600	C2C—H2C	0.9300
O1B—C10B	1.2268 (18)	C3C—C4C	1.400 (2)
O2B—N2B	1.2339 (16)	C4C—C5C	1.394 (2)
O3B—N2B	1.2388 (16)	C4C—H4C	0.9300
O4B—C8B	1.3515 (18)	C5C—C6C	1.389 (2)
O4B—C7B	1.4409 (17)	С6С—Н6С	0.9300
O5B—C8B	1.2085 (19)	C7C—H7C1	0.9700
N1B-C10B	1.3773 (19)	С7С—Н7С2	0.9700
N1B—C3B	1.4101 (19)	C8C—C9C	1.495 (2)
N1B—H1B	0.8600	С9С—Н9С1	0.9600
N2B—C5B	1.4743 (18)	С9С—Н9С2	0.9600
C1B—C2B	1.390 (2)	С9С—Н9С3	0.9600
C1B—C6B	1.397 (2)	C10C—C11C	1.509 (2)
C1B—C7B	1.515 (2)	C11C—H11G	0.9600
C2B—C3B	1.408 (2)	С11С—Н11Н	0.9600
C2B—H2B	0.9300	C11C—H11I	0.9600
C8A—O4A—C7A	115.47 (12)	O4B—C7B—C1B	108.23 (12)
C10A—N1A—C3A	127.79 (13)	O4B—C7B—H7B1	110.1
C10A—N1A—H1A	116.1	C1B—C7B—H7B1	110.1
C3A—N1A—H1A	116.1	O4B—C7B—H7B2	110.1
O2A—N2A—O3A	122.82 (13)	C1B—C7B—H7B2	110.1
O2A—N2A—C5A	118.81 (12)	H7B1—C7B—H7B2	108.4
O3A—N2A—C5A	118.37 (12)	O5B—C8B—O4B	122.98 (14)
C2A—C1A—C6A	119.79 (14)	O5B—C8B—C9B	126.58 (14)
C2A—C1A—C7A	121.27 (13)	O4B—C8B—C9B	110.44 (13)
C6A—C1A—C7A	118.92 (13)	C8B—C9B—H9B1	109.5
C1A—C2A—C3A	121.31 (14)	C8B—C9B—H9B2	109.5
C1A—C2A—H2A	119.3	H9B1—C9B—H9B2	109.5
C3A—C2A—H2A	119.3	C8B—C9B—H9B3	109.5
C4A—C3A—C2A	119.82 (14)	H9B1—C9B—H9B3	109.5
C4A—C3A—N1A	122.98 (13)	H9B2—C9B—H9B3	109.5
C2A—C3A—N1A	117.19 (13)	O1B—C10B—N1B	123.01 (14)
C5A—C4A—C3A	117.18 (14)	O1B—C10B—C11B	122.52 (14)
C5A—C4A—H4A	121.4	N1B—C10B—C11B	114.47 (13)
C3A—C4A—H4A	121.4	C10B—C11B—H11D	109.5
C6A—C5A—C4A	124.39 (14)	C10B—C11B—H11E	109.5
C6A—C5A—N2A	118.56 (13)	H11D—C11B—H11E	109.5
C4A—C5A—N2A	117.05 (13)	C10B—C11B—H11F	109.5

C5A—C6A—C1A	117.50 (14)	H11D—C11B—H11F	109.5
С5А—С6А—Н6А	121.3	H11E—C11B—H11F	109.5
С1А—С6А—Н6А	121.3	C8C—O4C—C7C	116.93 (12)
O4A—C7A—C1A	108.22 (12)	C10C—N1C—C3C	128.15 (13)
O4A—C7A—H7A1	110.1	C10C—N1C—H1C	115.9
C1A—C7A—H7A1	110.1	C3C—N1C—H1C	115.9
O4A—C7A—H7A2	110.1	O2C—N2C—O3C	122.98 (13)
C1A—C7A—H7A2	110.1	O2C—N2C—C5C	118.77 (12)
H7A1—C7A—H7A2	108.4	O3C—N2C—C5C	118.24 (12)
O5A—C8A—O4A	123.03 (14)	C2C—C1C—C6C	119.95 (14)
O5A—C8A—C9A	126.41 (15)	C2C—C1C—C7C	121.43 (13)
O4A—C8A—C9A	110.56 (13)	C6C—C1C—C7C	118.60 (13)
С8А—С9А—Н9А1	109.5	C1C—C2C—C3C	121.37 (13)
С8А—С9А—Н9А2	109.5	C1C—C2C—H2C	119.3
Н9А1—С9А—Н9А2	109.5	C3C—C2C—H2C	119.3
С8А—С9А—Н9А3	109.5	C4C—C3C—C2C	119.56 (14)
Н9А1—С9А—Н9А3	109.5	C4C—C3C—N1C	122.72 (13)
Н9А2—С9А—Н9А3	109.5	C2C—C3C—N1C	117.72 (13)
O1A—C10A—N1A	122.96 (14)	C5C—C4C—C3C	117.36 (14)
O1A—C10A—C11A	122.92 (14)	С5С—С4С—Н4С	121.3
N1A—C10A—C11A	114.11 (13)	C3C—C4C—H4C	121.3
C10A—C11A—H11A	109.5	C6C—C5C—C4C	124.50 (14)
C10A—C11A—H11B	109.5	C6C—C5C—N2C	118.54 (13)
H11A—C11A—H11B	109.5	C4C—C5C—N2C	116.96 (13)
C10A—C11A—H11C	109.5	C5C—C6C—C1C	117.26 (14)
H11A—C11A—H11C	109.5	С5С—С6С—Н6С	121.4
H11B—C11A—H11C	109.5	С1С—С6С—Н6С	121.4
C8B—O4B—C7B	116.39 (12)	O4C—C7C—C1C	108.01 (12)
C10B—N1B—C3B	128.13 (12)	O4C—C7C—H7C1	110.1
C10B—N1B—H1B	115.9	C1C—C7C—H7C1	110.1
C3B—N1B—H1B	115.9	O4C—C7C—H7C2	110.1
O2B—N2B—O3B	122.71 (12)	C1C—C7C—H7C2	110.1
O2B—N2B—C5B	118.81 (12)	H7C1—C7C—H7C2	108.4
O3B—N2B—C5B	118.48 (12)	O5C—C8C—O4C	123.12 (15)
C2B—C1B—C6B	120.10 (13)	O5C—C8C—C9C	125.33 (15)
C2B—C1B—C7B	121.85 (13)	O4C—C8C—C9C	111.52 (13)
C6B—C1B—C7B	118.05 (13)	С8С—С9С—Н9С1	109.5
C1B—C2B—C3B	121.22 (13)	С8С—С9С—Н9С2	109.5
C1B—C2B—H2B	119.4	Н9С1—С9С—Н9С2	109.5
C3B—C2B—H2B	119.4	С8С—С9С—Н9С3	109.5
C4B—C3B—C2B	119.77 (13)	Н9С1—С9С—Н9С3	109.5
C4B—C3B—N1B	123.15 (13)	Н9С2—С9С—Н9С3	109.5
C2B—C3B—N1B	117.08 (12)	01C—C10C—N1C	122.94 (14)
C3B—C4B—C5B	117.05 (13)	O1C—C10C—C11C	122.96 (14)
C3B—C4B—H4B	121.5	N1C—C10C—C11C	114.10 (13)
C5B—C4B—H4B	121.5	C10C—C11C—H11G	109.5
C6B—C5B—C4B	124.55 (13)	С10С—С11С—Н11Н	109.5
C6B—C5B—N2B	118.63 (13)	H11G—C11C—H11H	109.5
C4B—C5B—N2B	116.82 (13)	C10C—C11C—H11I	109.5

C5B—C6B—C1B	117.30 (13)	H11G-C11C-H11I	10	9.5	
С5В—С6В—Н6В	121.3	H11H—C11C—H11I	10	9.5	
С1В—С6В—Н6В	121.3				
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N1A—H1A···O3A ⁱ	0.86	2.35	3.1897 (17)	166	
N1B—H1B···O3B ⁱⁱ	0.86	2.32	3.1506 (16)	164	
N1C—H1C···O3C ⁱ	0.86	2.31	3.1458 (17)	164	
C2A—H2A····O2A ⁱ	0.93	2.54	3.4345 (18)	161	
C2B—H2B···O2B ⁱⁱ	0.93	2.49	3.4046 (18)	169	
C2C—H2C···O2C ⁱ	0.93	2.56	3.4546 (18)	161	
Symmetry codes: (i) $x+1/2$, $-y+1/2$, $z+1/2$; (ii) $x-1/2$, $-y+1/2$, $z-1/2$.					

